S.T.E.A.M. in Early Childhood

Thomas T. Peters, Ed.D.

SC Coalition for Mathematics and Science

Sandra M. Linder, Ph.D.

Eugene T. Moore College of Education, Clemson University

Nichole Myles

Children's Museum of the Lowcountry

Tracy Lamb, Moderator

SC First Steps Board of Trustees

2017 Chairmen's Summit on Early Childhood: Equity Begins Here

STEM IN EARLY CHILDHOOD FIVE "SIMPLE" STEPS TO SUCCESS.

Dr. Tom Peters

Executive Director

tpeters@clemson.edu

864-656-1863

FIRST STEPS SC December 8, 2017

FOUNDING PARTNERS

QUIZ Time!!!!!

Part 1 – Name that Acronym!

- a. STEM
- b. STEAM
- c. STREAM
- d. THEMAS

Incorrect response

Part 2 – Who Cares?

You may discuss with a neighbor.

STEM + Pipeline = A Pervasive Association

STEM Pipeline - About 1,500,000 results (0.61 seconds)

Source: NCES Digest of Education Statistics; Science & Engineering Indicators 2008

STEM + Pipeline = A Pervasive Association What are some things this visual tells you?

STEM + Pipeline = A Pervasive Association

General knowledge about the world we live in matters for future STEM success.

FIRST, Do No Harm!

SECOND, Engage Parents!

Before college, WHAT got you interested in STEM?

34% of males and 39% of females identify a family member.

Interest begins at age 7-8!!!

(Harris Poll 2011)

Who had the most influence on your decision to study in this area? 36% of college STEM students identify a family member.

THIRD, Explore...don't Bore!

Name

Your Sense of Smell

You use your nose to *smell* things. This is your sense of **smell**. Look at each picture. Circle the pictures that show things you can *smell*.

smell

FOURTH, Play Matters!

YOUR BRAIN ON CHILDHOOD

The Unexpected Side Effects of Classrooms, Ballparks, Family Rooms, and the Minivan

FINALLY, Consider a Different Metaphor!

Practice, grit, occasional wipe-outs, balance, a bit of luck, and bright opportunities awaiting if you can stay on board.

Tom Peters, Ed.D. **Executive Director** South Carolina's Coalition for Mathematics & Science tpeters@clemson.edu 864-656-1863

Understanding STEM practices to better support 21st century learners

Associate Professor: Early Childhood Mathematics
Clemson University
sandram@clemson.edu

Why STEM?

STEM was originally conceived not because of content but because the ways in which we engage in content are the same across Science, Technology, Engineering, and Mathematics

	Problem Solving	Reasoning & Proof	Communication	Representation	Connections
	NGSS: Asking questions (science) and defining problems (engineering)	NGSS: Analyzing and interpreting data	NGSS: Engaging in an argument from evidence	NGSS: Developing and using models	NGSS: Using mathematics and computational thinking
	NGSS: Planning and carrying out investigations	NGSS: Constructing explanations (science) and designing solutions (engineering)	ISTE: Communication and collaboration	NGSS: Obtaining, evaluating, and communicating information	ISTE: Research and
	ISTE: Critical thinking, problem solving, and decision making	ISTE: Critical thinking, problem solving, and decision making	ISTE: Research and information fluency	ISTE: Research and information fluency	information fluency
	ISTE: Creativity and innovation	ISTE: Creativity and innovation	ISTE: Creativity and innovation	ISTE: Creativity and Innovation	ISTE: Creativity and innovation

STEM starts with problem solving

- ► The teachers' role in an early childhood classroom is to facilitate learning through problem solving scenarios (either play-based or formal lessons) and through questioning.
- ► Teachers can pose short-term or long-term problems or scenarios (e.g.)
 - ► How can we set the table for snack? How can we make sure we all have the same amount of food?
 - ► How can we organize the materials in the art center so that they are accessible without teacher help?
 - ► How can we work together to solve this puzzle?

Designing STEM Provocations

- In addition to everyday experiences, teachers can develop openended explorations- also known as provocations
 - Implement in learning centers, outdoors, or any space where learning can occur
 - Provocations give teachers opportunities for intentional observations
 - ▶ Teachers carefully select materials and media and set out for children to explore without giving instructions or directions
 - ▶ A teacher wants to examine what children know and understand about early materials, "create a provocation area where children engage with rocks, sticks, leaves, sand, seashells, cotton, and other materials" (Eckhoff & Linder, 2017).

What do EC Teachers think of STEM/STEAM?

- Examination of teacher beliefs related to STEAM education following a one-day conference for early childhood educators (Jamil, Linder, & Stegelin, 2017).
 - 41 participants
 - Professional development focused on STEAM integration across the early years
 - ▶ 35 item survey- STEAM beliefs
 - ► Follow up interviews to better understand participant needs/challenges related to implementing STEAM practices

Brief Survey Findings

ltem	Mean (SD)*
It is important for all students to learn exactly the same material in a class	2.88 (1.31)
The methods and concepts for a good STEAM lesson can all come from the same discipline	3.36 (1.58)
To understand what students really know, teachers should test them on demonstrating specific skills, instead of confusing them with application problems	2.69 (1.38)
If you cannot state what a student should learn from your STEAM lesson, you should not spend time teaching it * Scale of 1 (Strongly Disagree) to 6 (Strongly	4.10 (1.26)
Agree)	

Follow Up Interviews

- ► Focus on Products
- ▶ Priorities for Instruction
- ▶ View of Children
- Management

Moving Forward

- Sustained PD experiences focusing on STEM/STEAM processes
- Support for teachers when implementing STEM/STEAM practices
- Further research on teacher beliefs and motivation towards STEM/STEAM

STEM & STEAM learning in the informal space

Nichole Myles, Executive **Director** nichole@explorecml.org

children's of the lowcountry

Where young children learn

STEAM

- o science
- technology
- engineering
- o arts

Informal experiences in STEAM learning

- interdisciplinary
- o open-ended
- o hands-on
- o project-based
- creative process focused
- values failure
- develops 21st century skills

STEAM learners in the informal space

- Wide developmental ranges of students
 - academically
 - o socially/emotionally
 - o motor
- Wide variety of experiences
 - o opportunity gap
 - family/school culture

Engaging parents in the informal space

- collaborative
- o observation
- o follow up
- context and messaging
- meaning and importance
- NAEYC for families
 - o parents need to know it's okay if things don't work there will days that things won't work but children will figure it out.

Teachers in the informal space

- observations of student behavior, interests and skills
- confidence building experiences
- relationship building experiences
- new classroom competencies
- inspiration
- o practice

STEAM language

Making room for STEAM failures

- failure as part of the proces
- o it's a glitch
- finding safe spaces to fail

Technology in the informal space

- not just electronics
- age-appropriate tools
- simple machines
- child-directed tools
- problem-solving opportunities

A word about the arts in STEAM

- o not just visual arts; dramatic arts, dance & music
- process vs. product
- open-ended
- let students choose and explore the media
- retelling stories in other formats (songs, dance)

STEAM to support Standards

- South Carolina Early Learning Standards
- Head Start Early Learning Outcomes
 Framework
 - Approaches to Learning
 - Social and Emotional Development
 - Language and Literacy
 - Cognition
 - Physical Development

Is it a STEAM experience? ...what's the intention?

- what is this intended outcome of the activity/experience or lesson?
- does the child have to 'complete' the activity to be successful?
- are STEAM/STEM skills (implicit or explicit) central to the activity/experience or lesson?
- is everyone who is participating expected to leave with the same product?

STEAM Resources

- Children's Museum of the Lowcountry explorecml.org/resources
- CML STEM Google Drive
 - starr@explorecml.org
- o STEM to STEAM stemtosteam.org
- STEAM Art Lessons <u>www.smore.com/tgc</u> <u>steam-art-lessons</u>
- o TinkerLab tinkerlab.com
- The Show Me Librarian showmelibrarian.blogspot.com/p/all-things-steam.html
- Education Closet <u>educationcloset.com/ste</u>

- STEM/STEAM Lessons, Activities, and Ideas by We Are Teachers on Pinterest www.pinterest.com/weareteachers/stemsteam-lessons-activitiesand-ideas/
- Babble Dabble Do <u>babbledabbledo.com/25-steam-projects-for-kids/</u>
- How to Smile howtosmile.org
- Library Makers <u>librarymakers.blogspot.com</u>
- PreKinders prekinders.com/science-page

- New ways to build <u>www.modernparentsmessykids.com/play-idea-17-unique-materials-building-creating/</u>
- Teach Preschool<u>teachpreschool.org/category/science-and-nature/</u>
- Math Science Music mathsciencemusic.org/#/
- Sphero Education <u>www.sphero.com/education</u>
- NAEY Teaching Young Children <u>naeyc.org</u>

S.T.E.A.M. in Early Childhood

Thomas T. Peters, Ed.D.

SC Coalition for Mathematics and Science

Sandra M. Linder, Ph.D.

Eugene T. Moore College of Education, Clemson University

Nichole Myles

Children's Museum of the Lowcountry

Tracy Lamb, Moderator

SC First Steps Board of Trustees

2017 Chairmen's Summit on Early Childhood: Equity Begins Here

STEM IN EARLY CHILDHOOD FIVE "SIMPLE" STEPS TO SUCCESS.

Dr. Tom Peters

Executive Director

tpeters@clemson.edu

864-656-1863

FIRST STEPS SC December 8, 2017

FOUNDING PARTNERS

QUIZ Time!!!!!

Part 1 – Name that Acronym!

- a. STEM
- b. STEAM
- c. STREAM
- d. THEMAS

Incorrect response

Part 2 – Who Cares?

You may discuss with a neighbor.

STEM + Pipeline = A Pervasive Association

STEM Pipeline - About 1,500,000 results (0.61 seconds)

Source: NCES Digest of Education Statistics; Science & Engineering Indicators 2008

STEM + Pipeline = A Pervasive Association What are some things this visual tells you?

STEM + Pipeline = A Pervasive Association

General knowledge about the world we live in matters for future STEM success.

FIRST, Do No Harm!

SECOND, Engage Parents!

Before college, WHAT got you interested in STEM?

34% of males and 39% of females identify a family member.

Interest begins at age 7-8!!!

(Harris Poll 2011)

Who had the most influence on your decision to study in this area? 36% of college STEM students identify a family member.

THIRD, Explore...don't Bore!

Name

Your Sense of Smell

You use your nose to *smell* things. This is your sense of **smell**. Look at each picture. Circle the pictures that show things you can *smell*.

smell

FOURTH, Play Matters!

YOUR BRAIN ON CHILDHOOD

The Unexpected Side Effects of Classrooms, Ballparks, Family Rooms, and the Minivan

FINALLY, Consider a Different Metaphor!

Practice, grit, occasional wipe-outs, balance, a bit of luck, and bright opportunities awaiting if you can stay on board.

Tom Peters, Ed.D. **Executive Director** South Carolina's Coalition for Mathematics & Science tpeters@clemson.edu 864-656-1863

Understanding STEM practices to better support 21st century learners

Associate Professor: Early Childhood Mathematics
Clemson University
sandram@clemson.edu

Why STEM?

STEM was originally conceived not because of content but because the ways in which we engage in content are the same across Science, Technology, Engineering, and Mathematics

	Problem Solving	Reasoning & Proof	Communication	Representation	Connections
	NGSS: Asking questions (science) and defining problems (engineering)	NGSS: Analyzing and interpreting data	NGSS: Engaging in an argument from evidence	NGSS: Developing and using models	NGSS: Using mathematics and computational thinking
	NGSS: Planning and carrying out investigations	NGSS: Constructing explanations (science) and designing solutions (engineering	ISTE: Communication and collaboration	NGSS: Obtaining, evaluating, and communicating information	ISTE: Research and
	ISTE: Critical thinking, problem solving, and decision making	ISTE: Critical thinking, problem solving, and decision making	ISTE: Research and information fluency	ISTE: Research and information fluency	information fluency
	ISTE: Creativity and innovation	ISTE: Creativity and innovation	ISTE: Creativity and innovation	ISTE: Creativity and Innovation	ISTE: Creativity and innovation

STEM starts with problem solving

- ► The teachers' role in an early childhood classroom is to facilitate learning through problem solving scenarios (either play-based or formal lessons) and through questioning.
- ► Teachers can pose short-term or long-term problems or scenarios (e.g.)
 - ► How can we set the table for snack? How can we make sure we all have the same amount of food?
 - ► How can we organize the materials in the art center so that they are accessible without teacher help?
 - ► How can we work together to solve this puzzle?

Designing STEM Provocations

- In addition to everyday experiences, teachers can develop openended explorations- also known as provocations
 - Implement in learning centers, outdoors, or any space where learning can occur
 - ▶ Provocations give teachers opportunities for intentional observations
 - Teachers carefully select materials and media and set out for children to explore without giving instructions or directions
 - ▶ A teacher wants to examine what children know and understand about early materials, "create a provocation area where children engage with rocks, sticks, leaves, sand, seashells, cotton, and other materials" (Eckhoff & Linder, 2017).

What do EC Teachers think of STEM/STEAM?

- Examination of teacher beliefs related to STEAM education following a one-day conference for early childhood educators (Jamil, Linder, & Stegelin, 2017).
 - 41 participants
 - Professional development focused on STEAM integration across the early years
 - ▶ 35 item survey- STEAM beliefs
 - ► Follow up interviews to better understand participant needs/challenges related to implementing STEAM practices

Brief Survey Findings

Mean (SD)*
2.88 (1.31)
3.36 (1.58)
2.69 (1.38)
4.10 (1.26)

Follow Up Interviews

- ► Focus on Products
- ▶ Priorities for Instruction
- ▶ View of Children
- Management

Moving Forward

- Sustained PD experiences focusing on STEM/STEAM processes
- Support for teachers when implementing STEM/STEAM practices

Further research on teacher beliefs and motivation towards STEM/STEAM

STEM & STEAM learning in the informal space

Nichole Myles, Executive Director nichole@explorecml.org

Where young children learn

STEAM

- o science
- technology
- engineering
- o arts

Informal experiences in STEAM learning

- interdisciplinary
- o open-ended
- o hands-on
- o project-based
- creative process focused
- values failure
- develops 21st century skills

STEAM learners in the informal space

- Wide developmental ranges of students
 - academically
 - o socially/emotionally
 - o motor
- Wide variety of experiences
 - opportunity gap
 - o family/school culture

Engaging parents in the informal space

- collaborative
- o observation
- o follow up
- context and messaging
- meaning and importance
- NAEYC for families
 - o parents need to know it's okay if things don't work there will days that things won't work but children will figure it out.

Teachers in the informal space

- observations of student behavior, interests and skills
- confidence building experiences
- relationship building experiences
- new classroom competencies
- inspiration
- o practice

STEAM language

Making room for STEAM failures

- failure as part of the proces
- o it's a glitch
- finding safe spaces to fail

Technology in the informal space

- not just electronics
- age-appropriate tools
- simple machines
- child-directed tools
- problem-solving opportunities

A word about the arts in STEAM

- o not just visual arts; dramatic arts, dance & music
- process vs. product
- open-ended
- let students choose and explore the media
- retelling stories in other formats (songs, dance)

STEAM to support Standards

- South Carolina Early Learning Standards
- Head Start Early Learning Outcomes
 Framework
 - Approaches to Learning
 - Social and Emotional Development
 - Language and Literacy
 - Cognition
 - Physical Development

Is it a STEAM experience? ...what's the intention?

- what is this intended outcome of the activity/experience or lesson?
- does the child have to 'complete' the activity to be successful?
- are STEAM/STEM skills (implicit or explicit) central to the activity/experience or lesson?
- is everyone who is participating expected to leave with the same product?

- Children's Museum of the Lowcountry explorecml.org/resources
- CML STEM Google Drive
 - starr@explorecml.org
- o STEM to STEAM stemtosteam.org
- STEAM Art Lessons <u>www.smore.com/tgc</u> <u>steam-art-lessons</u>
- o TinkerLab tinkerlab.com
- The Show Me Librarian showmelibrarian.blogspot.com/p/all-things-steam.html
- Education Closet educationcloset.com/ste

- STEM/STEAM Lessons, Activities, and Ideas by We Are Teachers on Pinterest www.pinterest.com/weareteachers/stemsteam-lessons-activitiesand-ideas/
- Babble Dabble Do <u>babbledabbledo.com/25-steam-projects-for-kids/</u>
- How to Smile howtosmile.org
- Library Makers <u>librarymakers.blogspot.com</u>
- PreKinders prekinders.com/science-page

- New ways to build <u>www.modernparentsmessykids.com/play-idea-17-unique-materials-building-creating/</u>
- Teach Preschool<u>teachpreschool.org/category/science-and-nature/</u>
- Math Science Music mathsciencemusic.org/#/
- Sphero Education www.sphero.com/education
- NAEY Teaching Young Children naeyc.org